Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.

Identifieur interne : 000198 ( Main/Exploration ); précédent : 000197; suivant : 000199

Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.

Auteurs : Kanika Narula [Inde] ; Eman Elagamey [Inde, Égypte] ; Magdi A E. Abdellatef [Inde, Égypte] ; Arunima Sinha [Inde] ; Sudip Ghosh [Inde] ; Niranjan Chakraborty [Inde] ; Subhra Chakraborty [Inde]

Source :

RBID : pubmed:32170889

Abstract

Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.

DOI: 10.1111/tpj.14750
PubMed: 32170889


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.</title>
<author>
<name sortKey="Narula, Kanika" sort="Narula, Kanika" uniqKey="Narula K" first="Kanika" last="Narula">Kanika Narula</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elagamey, Eman" sort="Elagamey, Eman" uniqKey="Elagamey E" first="Eman" last="Elagamey">Eman Elagamey</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619</wicri:regionArea>
<wicri:noRegion>12619</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdellatef, Magdi A E" sort="Abdellatef, Magdi A E" uniqKey="Abdellatef M" first="Magdi A E" last="Abdellatef">Magdi A E. Abdellatef</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619</wicri:regionArea>
<wicri:noRegion>12619</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sinha, Arunima" sort="Sinha, Arunima" uniqKey="Sinha A" first="Arunima" last="Sinha">Arunima Sinha</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Sudip" sort="Ghosh, Sudip" uniqKey="Ghosh S" first="Sudip" last="Ghosh">Sudip Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Niranjan" sort="Chakraborty, Niranjan" uniqKey="Chakraborty N" first="Niranjan" last="Chakraborty">Niranjan Chakraborty</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Subhra" sort="Chakraborty, Subhra" uniqKey="Chakraborty S" first="Subhra" last="Chakraborty">Subhra Chakraborty</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32170889</idno>
<idno type="pmid">32170889</idno>
<idno type="doi">10.1111/tpj.14750</idno>
<idno type="wicri:Area/Main/Corpus">000192</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000192</idno>
<idno type="wicri:Area/Main/Curation">000192</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000192</idno>
<idno type="wicri:Area/Main/Exploration">000192</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.</title>
<author>
<name sortKey="Narula, Kanika" sort="Narula, Kanika" uniqKey="Narula K" first="Kanika" last="Narula">Kanika Narula</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elagamey, Eman" sort="Elagamey, Eman" uniqKey="Elagamey E" first="Eman" last="Elagamey">Eman Elagamey</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619</wicri:regionArea>
<wicri:noRegion>12619</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdellatef, Magdi A E" sort="Abdellatef, Magdi A E" uniqKey="Abdellatef M" first="Magdi A E" last="Abdellatef">Magdi A E. Abdellatef</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619</wicri:regionArea>
<wicri:noRegion>12619</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sinha, Arunima" sort="Sinha, Arunima" uniqKey="Sinha A" first="Arunima" last="Sinha">Arunima Sinha</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Sudip" sort="Ghosh, Sudip" uniqKey="Ghosh S" first="Sudip" last="Ghosh">Sudip Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Niranjan" sort="Chakraborty, Niranjan" uniqKey="Chakraborty N" first="Niranjan" last="Chakraborty">Niranjan Chakraborty</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chakraborty, Subhra" sort="Chakraborty, Subhra" uniqKey="Chakraborty S" first="Subhra" last="Chakraborty">Subhra Chakraborty</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067</wicri:regionArea>
<wicri:noRegion>110067</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32170889</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>103</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.</ArticleTitle>
<Pagination>
<MedlinePgn>561-583</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14750</ELocationID>
<Abstract>
<AbstractText>Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Narula</LastName>
<ForeName>Kanika</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elagamey</LastName>
<ForeName>Eman</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdellatef</LastName>
<ForeName>Magdi A E</ForeName>
<Initials>MAE</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Plant Pathology Research Institute, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sinha</LastName>
<ForeName>Arunima</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Sudip</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chakraborty</LastName>
<ForeName>Niranjan</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-6564-4734</Identifier>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chakraborty</LastName>
<ForeName>Subhra</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-4649-8209</Identifier>
<AffiliationInfo>
<Affiliation>National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">chickpea</Keyword>
<Keyword MajorTopicYN="Y">chitosan-triggered immunity</Keyword>
<Keyword MajorTopicYN="Y">extracellular matrix</Keyword>
<Keyword MajorTopicYN="Y">metabolomics</Keyword>
<Keyword MajorTopicYN="Y">plant-fungal interaction</Keyword>
<Keyword MajorTopicYN="Y">quantitative proteomics</Keyword>
<Keyword MajorTopicYN="Y">vascular wilt</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32170889</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14750</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akamatsu, A., Wong, H.L., Fujiwara, M. et al. (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13, 465-476.</Citation>
</Reference>
<Reference>
<Citation>Alburquenque, C., Bucarey, S.A., Neira-Carrillo, A., Urzúa, B., Hermosilla, G. and Tapia, C.V. (2010) Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Med Mycol. 48, 1018-1023.</Citation>
</Reference>
<Reference>
<Citation>Amborabé, B.E., Bonmort, J., Fleurat-Lessard, P. and Roblin, G. (2008) Early events induced by chitosan on plant cells. J. Exp. Bot. 59, 2317-2324.</Citation>
</Reference>
<Reference>
<Citation>Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J.F., Wang, M., Wang, J., Liu, B. and Wang, H.B. (2014) OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J. 80, 1072-1084.</Citation>
</Reference>
<Reference>
<Citation>Asada, K. (1992) Ascorbate peroxidase: a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant 85, 235-241.</Citation>
</Reference>
<Reference>
<Citation>Ashraf, N., Basu, S., Narula, K., Ghosh, S., Tayal, R., Gangisetty, N., Biswas, S., Aggarwal, P.R., Chakraborty, N. and Chakraborty, S. (2018) Integrative network analyses of wilt transcriptome in chickpea reveal genotype dependent regulatory hubs in immunity and susceptibility. Sci. Rep. 8, 6528.</Citation>
</Reference>
<Reference>
<Citation>Bandaranayake, P.C., Filappova, T., Tomilov, A., Tomilova, N.B., Jamison-McClung, D., Ngo, Q., Inoue, K. and Yoder, J.I. (2010) A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22, 1404-1419.</Citation>
</Reference>
<Reference>
<Citation>Benhamou, N., Kloepper, J.W. and Tuzun, S. (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204, 153-168.</Citation>
</Reference>
<Reference>
<Citation>Bhushan, D., Pandey, A., Chattopadhyay, A., Choudhary, M.K., Chakraborty, S., Datta, A. and Chakraborty, N. (2006) Extracellular matrix proteome of chickpea (Cicer arietinum L.) illustrates pathway abundance, novel protein functions and evolutionary perspect. J. Proteome Res. 5, 1711-1720.</Citation>
</Reference>
<Reference>
<Citation>Bigeard, J., Colcombet, J. and Hirt, H. (2015) Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8, 521-539.</Citation>
</Reference>
<Reference>
<Citation>Chandra, S., Chakraborty, N., Panda, K. and Acharya, K. (2017) Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. Plant Physiol. Biochem. 115, 298-307.</Citation>
</Reference>
<Reference>
<Citation>Clark, G., Wu, M., Wat, N. et al. (2010) Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Mol. Biol. 74, 423-435.</Citation>
</Reference>
<Reference>
<Citation>Day, R.B., Okada, M., Ito, Y., Tsukada, K., Zaghouani, H., Shibuya, N. and Stacey, G. (2001) Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol. 126, 1162-1173.</Citation>
</Reference>
<Reference>
<Citation>Demidchik, V., Shang, Z., Shin, R., Colaço, R., Laohavisit, A., Shabala, S. and Davies, J.M. (2011) Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. Plant Physiol. 156, 1375-1385.</Citation>
</Reference>
<Reference>
<Citation>Elagamey, E., Narula, K., Sinha, A., Ghosh, S., Abdellatef, M.A.E., Chakraborty, N. and Chakraborty, S. (2017a) Quantitative extracellular matrix proteomics suggests cell wall reprogramming in host-specific immunity during vascular wilt caused by Fusarium oxysporum in chickpea. Proteomics 17, 23-24.</Citation>
</Reference>
<Reference>
<Citation>Elagamey, E., Sinha, A., Narula, K., Abdellatef, M.A.E., Chakraborty, N. and Chakraborty, S. (2017b) Molecular dissection of extracellular matrix proteome reveals discrete mechanism regulating Verticillium dahliae triggered vascular wilt disease in potato. Proteomics 17, 1 600 373.</Citation>
</Reference>
<Reference>
<Citation>Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V. and Maule, A.J. (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc. Natl Acad. Sci. USA 110, 9166-9170.</Citation>
</Reference>
<Reference>
<Citation>Feng, H., Xia, W., Shan, C., Zhou, T., Cai, W. and Zhang, W. (2015) Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. Int. J. Biol. Macromol. 72, 364-369.</Citation>
</Reference>
<Reference>
<Citation>Fliegmann, J., Uhlenbroich, S., Shinya, T., Martinez, Y., Lefebvre, B., Shibuya, N. and Bono, J.J. (2011) Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants. Plant Physiol. Biochem. 49, 709-720.</Citation>
</Reference>
<Reference>
<Citation>Fristensky, B., Riggleman, R.C., Wagoner, W. and Hadwiger, L.A. (1985) Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol. Plant Pathol. 27, 15-28.</Citation>
</Reference>
<Reference>
<Citation>Furukawa, S., Taniai, K., Yang, J., Shono, T. and Yamakawa, M. (1999) Induction of gene expression of antibacterial proteins by chitin oligomers in the silkworm, Bombyx mori. Insect Mol. Biol. 8, 145-148.</Citation>
</Reference>
<Reference>
<Citation>Garcia-Limones, C., Hervás, A., Navas-Cortés, J.A., Jiménez-Díaz, R.M. and Tena, M. (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 61, 325-337.</Citation>
</Reference>
<Reference>
<Citation>Ghosh, S., Narula, K., Sinha, A., Ghosh, R., Jawa, P., Chakraborty, N. and Chakraborty, S. (2016) Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia. J. Proteomics 143, 242-253.</Citation>
</Reference>
<Reference>
<Citation>Goya, R.C., Moraisb, S.T.B. and Assis, O.B.G. (2016) Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 26, 122-127.</Citation>
</Reference>
<Reference>
<Citation>Guo, M., Chen, K. and Zhang, P. (2012) Transcriptome profile analysis of resistance induced by burdock fructooligosaccharide in tobacco. J. Plant Physiol. 169, 1511-1519.</Citation>
</Reference>
<Reference>
<Citation>Gust, A.A., Willmann, R., Desaki, Y., Grabherr, H.M. and Nürnberger, T. (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17, 495-502.</Citation>
</Reference>
<Reference>
<Citation>El Hadrami, A., Adam, L.R., El Hadrami, I. and Daay, F. (2010) Chitosan in plant protection. Mar. Drugs 8, 968-987.</Citation>
</Reference>
<Reference>
<Citation>El Hassni, M., El Hadrami, A., Daayf, F., Chérif, M., Ait Barka, E. and El Hadrami, I. (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinisand elicitor of defence reactions in date palm roots. Phytopathol. Mediterr. 43, 195-204.</Citation>
</Reference>
<Reference>
<Citation>Hadwiger, L.A. and Beckman, J.M. (1980) Chitosan as a Component of Pea-Fusarium solani Interactions. Plant Physiol. 66, 205-211.</Citation>
</Reference>
<Reference>
<Citation>Iriti, M. and Faoro, F. (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 4, 66-68.</Citation>
</Reference>
<Reference>
<Citation>Itoh, T., Hibi, T., Fujii, Y., Sugimoto, I., Fujiwara, A., Suzuki, F., Iwasaki, Y., Kim, J.K., Taketo, A. and Kimoto, H. (2013) Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7. Appl. Environ. Microbiol. 79, 7482-7490.</Citation>
</Reference>
<Reference>
<Citation>Jia, X., Meng, Q., Zeng, H., Wang, W. and Yin, H. (2016) Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Sci. Rep. 6, 26 144.</Citation>
</Reference>
<Reference>
<Citation>Jiménez-Díaz, R.M., Trapero-Casas, A. and de la Colina, J.C. (1989) Races of Fusarium Oxysporum F. sp. Ciceri infecting chickpeas in Southern Spain. In Vascular Wilt Diseases of Plants (Tjamos, E.C. and Beckman, C.H., eds), NATO ASI Series (Series H: Cell Biology), Vol. 28. Berlin: Springer.</Citation>
</Reference>
<Reference>
<Citation>Kaku, H., Shibuya, N., Xu, P., Aryan, A.P. and Fincher, G.B. (1997) N-acetylchitooligosaccharide elicitor expression of a single 1,3-β-glucanase gene in suspension-cultured cells from barley (Hordeum vulgare). Physiol. Plant. 100, 111-118.</Citation>
</Reference>
<Reference>
<Citation>Kim, S.Y., Sivaguru, M. and Stacey, G. (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signalling. Plant Physiol. 142, 984-992.</Citation>
</Reference>
<Reference>
<Citation>Koehle, H., Jeblick, W., Poten, F., Blaschek, W. and Kauss, H. (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol. 77, 544-551.</Citation>
</Reference>
<Reference>
<Citation>Lamb, C. and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251-275.</Citation>
</Reference>
<Reference>
<Citation>Lee, W.S., Rudd, J.J., Hammond-Kosack, K.E. and Kanyuka, K. (2014) Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant Microbe. Interact. 27, 236-243.</Citation>
</Reference>
<Reference>
<Citation>Liu, P.D., Xue, Y.B., Chen, Z.J., Liu, G.D. and Tian, J. (2016) Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. J. Exp. Bot. 67, 4141-4154.</Citation>
</Reference>
<Reference>
<Citation>Meng, P.H., Raynaud, C., Tcherkez, G. et al. (2009) Crosstalks between myo inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS One 4, e7364.</Citation>
</Reference>
<Reference>
<Citation>Mohamed, S.A., Al-Malki, A.L., Kumosani, T.A. and El-Shishtawy, R.M. (2013) Horseradish peroxidase and chitosan: activation, immobilization and comparative results. Int. J. Biol. Macromol. 60, 295-300.</Citation>
</Reference>
<Reference>
<Citation>Montillet, J.L., Chamnongpol, S., Rustérucci, C., Dat, J., van de Cotte, B., Agnel, J.P., Battesti, C., Inzé, D.,Van Breusegem, F. and Triantaphylidès, C. (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138, 1516-1526.</Citation>
</Reference>
<Reference>
<Citation>Murphy, M.E. and Noack, E. (1994) Nitric oxide assay using haemoglobin method. Methods Enzymol. 233, 240-250.</Citation>
</Reference>
<Reference>
<Citation>Nagano, M., Ishikawa, T., Fujiwara, M., Fukao, Y., Kawano, Y., Kawai-Yamada, M. and Shimamoto, K. (2016) Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. Plant Cell 28, 1966-1983.</Citation>
</Reference>
<Reference>
<Citation>Ndimba, B.K., Chivasa, S., Hamilton, J.M., Simon, W.J. and Slabas, A.R. (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3, 1047-1059.</Citation>
</Reference>
<Reference>
<Citation>Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D. and Wilson, I. (2008) Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59, 165-176.</Citation>
</Reference>
<Reference>
<Citation>Okada, M., Matsumura, M., Ito, Y. and Shibuya, N. (2002) High-affinity binding proteins for N-acetylchitooligosaccharide elicitor in the plasma membranes from wheat, barley and carrot cells: conserved presence and correlation with the responsiveness to the elicitor. Plant Cell Physiol. 43, 505-512.</Citation>
</Reference>
<Reference>
<Citation>Paull, R.E., Chen, N.J., Ming, R., Wai, C.M., Shirley, N., Schwerdt, J. and Bulone, V. (2016) Carbon flux and carbohydrate gene families in pineapple. Trop. Plant Biol. 9, 200-213.</Citation>
</Reference>
<Reference>
<Citation>Peng, C.H. (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol. Modell. 135, 33-54.</Citation>
</Reference>
<Reference>
<Citation>Rahman, M.H., Hjeljord, L.G., Aam, B.B., Sørlie, M. and Tronsmo, A. (2015) Antifungal effect of chito-oligosaccharides with different degrees of polymerization. Eur. J. Plant Pathol. 141, 147-158.</Citation>
</Reference>
<Reference>
<Citation>Reese, T.A., Liang, H.E., Tager, A.M., Luster, A.D., Van Rooijen, N., Voehringer, D. and Locksley, R.M. (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447, 92-96.</Citation>
</Reference>
<Reference>
<Citation>Roby, D., Gadelle, A. and Toppan, A. (1987) Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem. Biophys. Res. Commun. 143, 885-892.</Citation>
</Reference>
<Reference>
<Citation>Sankararamakrishnan, N. and Sanghi, R. (2006) Preparation and characterization of a novel xanthated chitosan. Carbohydr. Polym. 66, 160-167.</Citation>
</Reference>
<Reference>
<Citation>Schauer, N., Zamir, D. and Fernie, A.R. (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot. 56, 297-307.</Citation>
</Reference>
<Reference>
<Citation>Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.</Citation>
</Reference>
<Reference>
<Citation>Shi, H.T., Li, R.J., Cai, W., Liu, W., Wang, C.L. and Lu, Y.T. (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol. 53, 344-357.</Citation>
</Reference>
<Reference>
<Citation>Shibuya, N. and Minami, E. (2001) Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59, 223-233.</Citation>
</Reference>
<Reference>
<Citation>Shibuya, N., Ebisu, N., Kamada, Y., Kaku, H., Cohn, J. and Ito, Y. (1996) Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant Cell Physiol. 37, 894-898.</Citation>
</Reference>
<Reference>
<Citation>Shinya, T., Yamaguchi, K., Desaki, Y. et al. (2014) Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J. 79, 56-66.</Citation>
</Reference>
<Reference>
<Citation>Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass. Technical Report, NREL/TP-510-42618. Lab. Anal. Proc. 1617, 1-6.</Citation>
</Reference>
<Reference>
<Citation>Soliman, M.H. and El-Mohamedy, R.S.R. (2017) Induction of defense-related physiological and antioxidant enzyme response against powdery mildew disease in Okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology 45, 409-420.</Citation>
</Reference>
<Reference>
<Citation>Stacey, G. and Shibuya, N. (1997) Chitin recognition in rice and legumes. Plant Soil 194, 161-169.</Citation>
</Reference>
<Reference>
<Citation>Tanaka, K., Gilroy, S., Jones, A.M. and Stacey, G. (2010a) Extracellular ATP signaling in plants. Trends Cell Biol. 20, 601-608.</Citation>
</Reference>
<Reference>
<Citation>Tanaka, S., Ichikawa, A., Yamada, K., Tsuji, G., Nishiuchi, T., Mori, M., Koga, H., Nishizawa, Y., O'Connell, R. and Kubo, Y. (2010b) HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biol. 10, 288.</Citation>
</Reference>
<Reference>
<Citation>Tanaka, K., Choi, J., Cao, Y. and Stacey, G. (2014) Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5, 446.</Citation>
</Reference>
<Reference>
<Citation>Thaware, D.S., Gholve, V.M. and Ghante, P.H. (2016) Screening of chickpea varieties, cultivars and genotypes against Fusarium oxysporum f. sp. Cicero. Int. J. Curr. Microbiol. App. Sci. 5, 896-904.</Citation>
</Reference>
<Reference>
<Citation>Tonón, C., Terrile, M.C., Iglesias, M.J., Lamattina, L. and Casalongué, C. (2010) Extracellular ATP, nitric oxide and superoxide act coordinately to regulate hypocotyl growth in etiolated Arabidopsis seedlings. J. Plant Physiol. 167, 540-546.</Citation>
</Reference>
<Reference>
<Citation>Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., de Billy, F., Prome, J.C. and Dénarié, J. (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351, 670-673.</Citation>
</Reference>
<Reference>
<Citation>Voxeur, A. and Fry, S.C. (2014) Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. Plant J. 79, 139-49.</Citation>
</Reference>
<Reference>
<Citation>Walker-Simmons, M. and Ryan, C.A. (1984) Proteinase inhibitor synthesis in tomato leaves. Plant Physiol. 76, 787-790.</Citation>
</Reference>
<Reference>
<Citation>Wan, J., Zhang, S. and Stacey, G. (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol. Plant Pathol. 5, 125-135.</Citation>
</Reference>
<Reference>
<Citation>Wu, S.J., Liu, Y.S. and Wu, J.Y. (2008) The signaling role of extracellular ATP and its dependence on Ca2+ flux in elicitation of Salvia miltiorrhiza hairy root cultures. Plant Cell Physiol. 49, 617-624.</Citation>
</Reference>
<Reference>
<Citation>Xing, K., Li, T.J., Liu, Y.F. et al. (2018) Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chem. 268, 188-195.</Citation>
</Reference>
<Reference>
<Citation>Yin, H., Zhao, X. and Du, Y. (2010) Oligochitosan: a plant diseases vaccine-A review. Carbohydr. Polym. 82, 1-8.</Citation>
</Reference>
<Reference>
<Citation>Yin, H., Li, Y., Zhang, H.Y., Wang, W.X., Lu, H., Grevsen, K., Zhao, X. and Du, Y. (2013) Chitosan oligosaccharides-triggered innate immunity contributes to oilseed rape resistance against Sclerotinia Sclerotiorum. Int. J. Plant Sci. 174, 722-732.</Citation>
</Reference>
<Reference>
<Citation>Yin, H., Du, Y. and Dong, Z. (2016) Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front Plant Sci. 7, 522.</Citation>
</Reference>
<Reference>
<Citation>Yoshioka, H., Mase, K., Yoshioka, M., Kobayashi, M. and Asai, S. (2011) Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity. Nitric Oxide 25, 216-221.</Citation>
</Reference>
<Reference>
<Citation>Zeng, L., Velásquez, A.C., Munkvold, K.R., Zhang, J. and Martin, G.B. (2012) A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 69, 92-103.</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Li, K., Xing, R., Liu, S., Chen, X., Yang, H. and Li, P. (2018) miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth. J. Agric. Food Chem. 66, 3810-3822.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
<li>Égypte</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Narula, Kanika" sort="Narula, Kanika" uniqKey="Narula K" first="Kanika" last="Narula">Kanika Narula</name>
</noRegion>
<name sortKey="Abdellatef, Magdi A E" sort="Abdellatef, Magdi A E" uniqKey="Abdellatef M" first="Magdi A E" last="Abdellatef">Magdi A E. Abdellatef</name>
<name sortKey="Chakraborty, Niranjan" sort="Chakraborty, Niranjan" uniqKey="Chakraborty N" first="Niranjan" last="Chakraborty">Niranjan Chakraborty</name>
<name sortKey="Chakraborty, Subhra" sort="Chakraborty, Subhra" uniqKey="Chakraborty S" first="Subhra" last="Chakraborty">Subhra Chakraborty</name>
<name sortKey="Elagamey, Eman" sort="Elagamey, Eman" uniqKey="Elagamey E" first="Eman" last="Elagamey">Eman Elagamey</name>
<name sortKey="Ghosh, Sudip" sort="Ghosh, Sudip" uniqKey="Ghosh S" first="Sudip" last="Ghosh">Sudip Ghosh</name>
<name sortKey="Sinha, Arunima" sort="Sinha, Arunima" uniqKey="Sinha A" first="Arunima" last="Sinha">Arunima Sinha</name>
</country>
<country name="Égypte">
<noRegion>
<name sortKey="Elagamey, Eman" sort="Elagamey, Eman" uniqKey="Elagamey E" first="Eman" last="Elagamey">Eman Elagamey</name>
</noRegion>
<name sortKey="Abdellatef, Magdi A E" sort="Abdellatef, Magdi A E" uniqKey="Abdellatef M" first="Magdi A E" last="Abdellatef">Magdi A E. Abdellatef</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000198 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000198 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32170889
   |texte=   Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32170889" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020